Intracellular protein delivery and gene transfection by electroporation using a microneedle electrode array.
نویسندگان
چکیده
The impact of many biopharmaceuticals, including protein- and gene-based therapies, has been limited by the need for better methods of delivery into cells within tissues. Here, intracellular delivery of molecules and transfection with plasmid DNA by electroporation is presented using a novel microneedle electrode array designed for the targeted treatment of skin and other tissue surfaces. The microneedle array is molded out of polylactic acid. Electrodes and circuitry required for electroporation are applied to the microneedle array surface by a new metal-transfer micromolding method. The microneedle array maintains mechanical integrity after insertion into pig cadaver skin and is able to electroporate human prostate cancer cells in vitro. Quantitative measurements show that increasing electroporation pulse voltage increases uptake efficiency of calcein and bovine serum albumin, whereas increasing pulse length has lesser effects over the range studied. Uptake of molecules by up to 50% of cells and transfection of 12% of cells with a gene for green fluorescent protein is demonstrated at high cell viability. It is concluded that the microneedle electrode array is able to electroporate cells, resulting in intracellular uptake of molecules, and has potential applications to improve intracellular delivery of proteins, DNA, and other biopharmaceuticals.
منابع مشابه
An electrically active microneedle array for electroporation.
We have designed and fabricated a microneedle array with electrical functionality with the final goal of electroporating skin's epidermal cells to increase their transfection by DNA vaccines. The microneedle array was made of polymethylmethacrylate (PMMA) by micromolding technology from a polydimethylsiloxane (PDMS) mold, followed by metal deposition, patterning using laser ablation, and electr...
متن کاملPossibility of electroporation with microneedle-electrode array for transdermal delivery of macromolecules
متن کامل
Optimal Electroporation Condition for Small Interfering RNA Transfection into MDA-MB-468 Cell Line
Background: Electroporation is a valuable tool for small interfering RNA (siRNA) delivery into cells because it efficiently transforms a wide variety of cell types. Since electroporation condition for each cell type must be determined experimentally, this study presents an optimal electroporation strategy to reproducibly and efficiently transfect MDA-MB 468 human breast cancer cell with siRNA. ...
متن کاملA flexible microneedle array as low-voltage electroporation electrodes for in vivo DNA and siRNA delivery.
In vivo electroporation is an appealing method to deliver nucleic acid into living tissues, but the clinical application of such a method was limited due to severe tissue damage and poor coverage of the tissue surface. Here we present the validation of a novel flexible microneedle array electrode (MNAE) chip, in which the microneedle array and the flexible substrate are integrated together to s...
متن کاملSize Specific Transfection to Mammalian Cells by Micropillar Array Electroporation
Electroporation serves as a promising non-viral gene delivery approach, while its current configuration carries several drawbacks associated with high-voltage electrical pulses and heterogeneous treatment on individual cells. Here we developed a new micropillar array electroporation (MAE) platform to advance the electroporation-based delivery of DNA and RNA probes into mammalian cells. By intro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 8 7 شماره
صفحات -
تاریخ انتشار 2012